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Abstract

Adaptation to local conditions is a fundamental process in evolution; however,

mechanisms maintaining local adaptation despite high gene flow are still poorly

understood. Marine ecosystems provide a wide array of diverse habitats that fre-

quently promote ecological adaptation even in species characterized by strong levels

of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus

morhua) are highly connected due to immense dispersal capabilities but nevertheless

show local adaptation in several key traits. By combining population genomic analy-

ses based on 12K single nucleotide polymorphisms with larval dispersal patterns

inferred using a biophysical ocean model, we show that Atlantic cod individuals

residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to off-

shore oceanic populations with considerable connectivity between these diverse

ecosystems. Nevertheless, we also find evidence for discrete fjord populations that

are genetically differentiated from offshore populations, indicative of local adapta-

tion, the degree of which appears to be influenced by connectivity. Analyses of the

genomic architecture reveal a significant overrepresentation of a large ~5 Mb chro-

mosomal rearrangement in fjord cod, previously proposed to comprise genes critical

for the survival at low salinities. This suggests that despite considerable connectivity

with offshore populations, local adaptation to fjord environments may be enabled

by suppression of recombination in the rearranged region. Our study provides new

insights into the potential of local adaptation in high gene flow species within fine

geographical scales and highlights the importance of genome architecture in analy-

ses of ecological adaptation.
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1 | INTRODUCTION

Local adaptation characterizes populations that experience higher

inherited fitness in their native habitat compared to members of

other populations transferred to the same environment (Kawecki &

Ebert, 2004). The degree of such ecological adaptation depends on

the directional selection of advantageous traits and is counteracted

by high connectivity and resulting homogenizing gene flow, implicat-

ing a limited potential for local adaptation in populations experienc-

ing high gene flow (Dobzhansky, 1937; Mayr, 1942; Wright, 1931).

Although environmental adaptation can also involve gene expres-

sion-induced plastic responses such as morphological, physiological

or behavioural changes, these occur without genotypic changes

(Reusch, 2014; Via et al., 1995).

Most marine fish populations have traditionally been regarded as

large panmictic entities with high connectivity due to the apparent

lack of geographical barriers, high dispersal capabilities and slow

genetic drift as a result of large effective population sizes (Allendorf,

Hohenlohe, & Luikart, 2010; DeWoody & Avise, 2000; Waples &

Gaggiotti, 2006). However, this assumption is challenged by an

increasing number of genetic studies reporting high levels of local

adaptation in marine fish populations despite substantial gene flow

(Clarke, Munch, Thorrold, & Conover, 2010; Limborg et al., 2012;

Milano et al., 2014; Nielsen et al., 2009; Therkildsen et al., 2013).

Simulation studies have demonstrated that local adaptation can arise

in these situations through selection on tightly linked divergent alle-

les rather than on many single loci (Yeaman & Whitlock, 2011). In

line with these expectations, the occurrence of linked alleles (e.g., in

the form of chromosomal rearrangements) in locally adapted popula-

tions has been reported in studies addressing the genome architec-

ture of fish species such as stickleback (Jones et al., 2012; Roesti,

Kueng, Moser, & Berner, 2015), Atlantic herring (Lamichhaney et al.,

2017; Martinez-Barrio et al., 2016) and Atlantic cod (Barney, Munk-

holm, Walt, & Palumbi, 2017; Berg et al., 2015, 2016; Bradbury

et al., 2013, 2014; Hemmer-Hansen et al., 2013; Kirubakaran et al.,

2016; Sodeland et al., 2016). Chromosomal rearrangements that

physically combine genes residing within “supergene clusters” and

promote adaptation in connected populations are well known in

plants (Lowry & Willis, 2010), and insects (Cheng et al., 2012; Joron

et al., 2011) and are widely discussed to play a role in speciation

and evolution (Hoffmann & Rieseberg, 2008; Schwander, Libbrecht,

& Keller, 2014). However, the relative importance of this mechanism

in highly connected marine populations on small geographical scales

remains poorly understood.

Atlantic cod (Gadus morhua Linnaeus, 1758) is a benthopelagic,

high-fecundity, predatory fish of great commercial and ecological

value occurring in a variety of habitats in the North Atlantic and

hence constitutes an ideal model for the investigation of local adap-

tation. Molecular studies inferring the potential for local adaptation

in Atlantic cod have a long history, which began with the discovery

of adaptive allelic variation in the oxygen-binding protein haemoglo-

bin (Sick, 1961) and the observation of a latitudinal gradient in the

distribution of its isoforms (Sick, 1965; for recent reviews see

Andersen (2012) and Ross, Behrens, Brander, Methling, and Mork

(2013)). Since then, extensive research has contributed to the

description of several genetically, phenotypically and behaviourally

distinct populations occurring in a wide range of different ecosys-

tems (Lilly et al., 2008). One of the best-investigated examples for

apparent local adaptation despite high connectivity is the co-

occurrence of two ecotypes of Atlantic cod, the migratory Northeast

Arctic cod (NEAC) and the stationary Norwegian coastal cod (NCC),

at the same spawning areas along the northern Norwegian coast

(Neuenfeldt et al., 2013). While genetic differences between NEAC

and NCC were already described in the 1960s (Moller, 1966), the

mechanism maintaining differentiation despite ongoing gene flow is

still a controversial subject (Hemmer-Hansen et al., 2013; Karlsen

et al., 2013). The releases of two successive Atlantic cod genome

assemblies (Star et al., 2011; Tørresen et al., 2017) facilitated the

investigation of such mechanisms, revealing the presence of large

chromosomal rearrangements likely permitting differentiation of

these ecotypes despite ongoing gene flow (Berg et al., 2016; Kiruba-

karan et al., 2016).

On a much smaller spatial scale within the Skagerrak and Katte-

gat, two confined seas connecting the brackish Baltic Sea with the

saline North Sea (Figure 1), evidence has recently accumulated for
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the presence of yet another pair of coexisting Atlantic cod ecotypes

(Andr�e et al., 2016; Rogers, Olsen, Knutsen, & Stenseth, 2014; Sode-

land et al., 2016). These coexisting fish are characterized by distinct

lifestyles, with mobile oceanic (offshore) individuals foraging along

the coast but possibly returning to North Sea or offshore Skagerrak

spawning sites, and sedentary coastal individuals that remain close

to the coast and local spawning sites at all times (Espeland et al.,

2008; Knutsen et al., 2007; Neuenfeldt et al., 2013; Rogers et al.,

2014). In line with this observation, differentiated Atlantic cod has

been described between estuarine western Skagerrak fjords and off-

shore areas, as well as between individual fjords (Jorde, Knutsen,

Espeland, & Stenseth, 2007; Knutsen, Jorde, Andr�e, & Stenseth,

2003; Knutsen et al., 2011; Olsen et al., 2004). In these cases, the

maintenance of differentiation has been associated with seascapes,

coastal topography and hydrographic features such as salinity gradi-

ents (Ciannelli et al., 2010; Howe et al., 2010; Knutsen et al., 2011;

Rogers et al., 2014). Limited migration of coastal cod (Espeland et al.,

2007, 2008), spawning site fidelity (Espeland et al., 2007; Skjæraa-

sen, Meager, Karlsen, Hutchings, & Fern€o, 2011) and pronounced

natal homing behaviour (Andr�e et al., 2016; Bonanomi et al., 2016;

Sved€ang, Righton, & Jonsson, 2007) could further aid differentiation

of coastal and oceanic ecotypes by reducing the potential for gene

flow. Interestingly, allelic frequency shifts of large chromosomal rear-

rangements have recently been described between western Skager-

rak cod residing in coastal vs. oceanic environments (Sodeland et al.,

2016). In contrast, studies have so far failed to delineate genetic

structuring of coastal and locally adapted populations within the fine

geographical scale along the eastern Skagerrak-Kattegat coast and

fjords (Andr�e et al., 2016; Sved€ang, Andr�e, Jonsson, Elfman, & Lim-

burg, 2010), although spawning site fidelity was supported by otolith

chemistry (Sved€ang et al., 2010).

Whether the hitherto observed sedentary coastal Atlantic cod

correspond to locally adapted fjord populations and whether similarly

differentiated ecotypes are also present at the eastern Skagerrak

coast remain to be investigated. It is also unclear whether the ocea-

nic genotype constitutes of North Sea cod, and whether connectivity

and gene flow between these groups exist — and if, whether the

exceptional genomic architecture of Atlantic cod contributes to the

potential of local adaptation on such fine geographical scales.

Answering these questions to improve our knowledge about the

mechanism by which local adaptation can be maintained despite high

connectivity and gene flow is becoming increasingly relevant in a

globally changing world (Bernatchez, 2016; Pinsky & Palumbi, 2014;

Savolainen, Lascoux, & Meril€a, 2013).

Using a genomewide 12K single nucleotide polymorphism (SNP)

array in combination with a comprehensive sampling scheme includ-

ing several fjords as well as adjacent populations, complemented

with biophysical modelling to predict the potential for gene flow

among areas, we here address the following research questions: 1.)

Can we detect the presence of differentiated cod ecotypes on small

spatial scales using genomewide data, and 2.) does the genomic

architecture of Atlantic cod contribute to the potential for local

adaptation?

2 | MATERIALS AND METHODS

2.1 | Sample collection

Samples of 350 Atlantic cod were obtained from 10 different loca-

tions in the Skagerrak-Kattegat area. For comparison, 177 specimens

were further sampled from adjacent, but well-differentiated refer-

ence locations: English Channel, North Sea and Danish straits (west-

ern Baltic) (Figure 1, for details see Table S1). Adult fish were all

collected during the spawning period from January to April (except

~60% of Grenland fjord individuals collected in November) by trawl-

ing or gill net, and care was taken to choose mature fish that were

at or close to spawning. Juvenile 0-group cod were collected either

in June or September by beach seine. Muscle tissue or fin clips were

stored in ethanol. All cod samples used were collected in compliance

with EU Directive 2010/63/EU and the national legislations in

Sweden, Denmark, and Norway.

2.2 | Genotyping and filtering

DNA was extracted from muscle tissue using standard DNA extrac-

tion kits and normalized to 100 ng/ll as described elsewhere (Berg

et al., 2015, 2016). All samples were individually genotyped for

10,913 SNPs using a custom Illumina Infinium II 12K SNP array fol-

lowing the manufacturer’s instructions (Illumina, San Diego, CA,

USA). The custom chip was designed based on eight individuals rep-

resenting the global variety of the species, and the Atlantic cod gen-

ome (Star et al., 2011). Quality control was performed using the

genotyping module in GENOMESTUDIO v2011.1 (Illumina Inc.) and the

software PLINK v1.07 (Purcell et al., 2007) leading to a high-quality

SNP set of 7,783 SNPs (for details see Appendix S1 and Table S2).

Variants were further filtered based on linkage to conform with the

expectations of models employed in our genetic analyses: the corre-

lation of allele frequencies (r2) was calculated based on genotypic

allele counts and 1,125 SNPs with an r2 > 0.1 were excluded, result-

ing in a final data set of 6,658 unlinked SNPs.

A second data set including SNPs with detected linkage was gen-

erated to investigate the importance of large chromosomal rear-

rangements containing tightly linked SNPs that may play important

roles in the divergence and adaptation of Atlantic cod (Bradbury

et al., 2013; Hemmer-Hansen et al., 2013; Bradbury et al., 2014;

Berg et al., 2015, 2016; Sodeland et al., 2016; Kirubakaran et al.,

2016; Barney et al., 2017; see section 2.5 below). All format conver-

sions were either accomplished with in-house scripts, or using the

software PGDSPIDER v2.0.8.0 (Lischer & Excoffier, 2012).

2.3 | Genetic differentiation

The population structure was investigated to delineate genetic dif-

ferentiation and admixture of fjord samples and diverged popula-

tions, as well as to test for an isolation-by-distance (IBD) pattern as

described earlier in the western North Atlantic cod (Beacham, Brat-

tey, Miller, Le, & Withler, 2002; Pogson, Taggart, Mesa, & Boutilier,
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2001). Individual ancestry and the number of genetic clusters (K)

were assessed using a hierarchical framework in STRUCTURE V2.3.2

(Pritchard, Stephens, & Donnelly, 2000) under the admixture model

with correlated allele frequencies for closely related populations or

highly migratory species (Falush, Stephens, & Pritchard, 2003). Five

replicates of 100,000 (Monte Carlo Markov chain (MCMC) iterations

(discarding the first 10,000 iterations as burn-in) were performed per

model, each testing for K = 1 to K = 5. Convergence was confirmed

by consistent results in all five replicates (see Table S3). In addition,

principal component analyses were performed to display the largest

variances in the genotype data (PCA, Appendix S2, Table S4).

In an assignment approach to distinguish between mechanical

mixture and admixture of individuals (Porras-Hurtado et al., 2013),

STRUCTURE analyses were conducted with the USEPOPINFO model,

using the North Sea and Kattegat samples as representatives of two

potential source populations. Enabling of PFROMPOPFLAGONLY

ensured that allele frequency estimates depend only on the refer-

ence samples, while MIGRPRIOR was set to 0.05 to allow some misclas-

sification of individuals. Per location q-values (estimated ancestry)

were log normalized (log(data/(1-data)) and analysed for modality

using Hartigans’ dip statistic (Hartigan & Hartigan, 1985) imple-

mented in the package DIPTEST v0.75-6 (M€achler, 2014) for R v3.1.0

(R Core Team, R Foundation for Statistical Computing 2016). Test

results were corrected for multiple testing by applying a false discov-

ery rate (FDR) of <0.05 using the R package QVALUE v1.43.0 (Storey,

Taylor, & Siegmund, 2004). The ancestry of fjord samples was quan-

tified by their hybrid indices (H) employing Bayesian genomic cline

analysis as implemented in BGC v1.03 (Gompert & Buerkle, 2012).

Based on the probability that an individual has inherited a genetic

marker from one of the two source populations North Sea and Kat-

tegat, H was estimated using two cline parameters that describe the

bias (a) and rate (b) of locus-specific introgression into an admixed

genomic background (Gompert & Buerkle, 2012). As the full set of

6,658 SNPs was too large to allow convergence, the 50 SNPs with

the highest fixation index (FST) values between the source popula-

tions were selected as ancestry informative markers using BAYESCAN

v2.1 (Foll & Gaggiotti, 2008) (Appendix S2, Table S5). Ten replicates,

each using 100,000 MCMC iterations (discarding the first 20,000

iterations as burn-in), were performed. Convergence of the MCMC

chain was assessed using TRACER v1.6 (Rambaut, Suchard, Xie, &

Drummond, 2014) and by comparison of the replicates, which pro-

duced qualitatively similar results. The replicate with the best fit

(highest mean log-likelihood) was selected to present the results.

Pairwise FST values (Weir & Cockerham, 1984) were calculated

using ARLEQUIN v3.5 and ARLECOREMAC_64BIT v3.5.2.2 (Excoffier &

Lischer, 2010), and their significance was assessed using 10,000

permutation steps. p-values were adjusted for multiple testing by

applying the FDR approach for nonindependent tests by Benjamini

and Yekutieli (2001). Pairwise FST values were plotted by means of

classic multidimensional scaling (MDS) using the “cmdscale” method

implemented in the R package STATS (R Core Team, R Foundation for

Statistical Computing 2016) after negative FST values were set to 0,

and a minimal constant (10�5) was added to prevent negative

eigenvalues. FST 95% confidence intervals (200 bootstrap replicates)

as well as pairwise genetic and geographical distance matrices for

tests of IBD were calculated using the R packages DIVERSITY v1.9.73

(Keenan, McGinnity, Cross, Crozier, & Prod€ohl, 2013) and FOSSIL

v0.3.7 (Vavrek, 2011). Least-cost path distances were obtained using

the R package MARMAP v0.9.2 (Pante & Simon-Bouhet, 2013) with

bathymetric data from the ETOPO1 1 Arc-Minute Global Relief

Model (Amante & Eakins, 2009), and Mantel tests of IBD were per-

formed using the R package VEGAN v2.3.0 (Dixon, 2003).

2.4 | Biophysical connectivity modelling

Physical transport and connectivity of Atlantic cod eggs and larvae

was quantified using a biophysical model to explore geneflow poten-

tial and connectivity by predicting the most important sources of lar-

vae settling along the Skagerrak coast and the Kattegat. A full

description of the biophysical model is given in Jonsson, Corell,

Andr�e, Sved€ang, and Moksnes (2016). Briefly, the dispersal of eggs

and larvae was modelled with a Lagrangian particle-tracking routine

in off-line mode driven by flow fields from an ocean circulation

model (BaltiX; Hordoir, Dieterich, Basu, Dietze, & Meier, 2013). The

oceanographic model covers the Baltic Sea, the Kattegat, the Skager-

rak and most of the North Sea with a horizontal resolution of 2 nau-

tical miles (3.7 km) and 84 levels in the vertical, ranging from 3 m at

the surface to 23 m in the deepest parts. The model has a free sur-

face, and the atmospheric forcing is a dynamic downscaling of the

ERA40 data set (Uppala et al., 2006). Freshwater run-off is forced

with climatological data from a composite of databases for the Baltic

Sea and the North Sea (Meier, 2007; O’Dea et al., 2014). A previous

validation of the BaltiX model showed that it is able to correctly rep-

resent the sea-surface height, both tidally induced and wind driven

(Hordoir et al., 2013). The velocity, temperature and salinity were

updated for all grid boxes in the model domain every three hours,

and the trajectory calculations were done with a 15-min time step.

To simulate dispersion of cod larvae, we used an individual-based

drift model with a wide range of combinations of spawning time,

egg and larval drift depth, as well as pelagic larval duration time (for

a detailed description see Jonsson et al., 2016). Briefly, eggs were

simulated to drift at depths between 5 and 15 m and hatched after

20 days. Subsequently, the larvae drifted for another 40 or 70 days

at depths between 5 and 30 m. Drifting eggs were started on the

15th of January, February, March and April in a number of spawning

areas in the North Sea, Skagerrak, Kattegat and the Danish straits

(Fig. S1). No mortality was included as little information about tem-

poral and spatial differences in mortality rates is available. Larval

drift simulations were repeated for 6 years (1995, 1996, 1998,

2000, 2001 and 2002), which represent negative, neutral and posi-

tive periods of the North Atlantic oscillation winter index (National

Center for Atmospheric Research, 2015), as winter NAO is known to

correlate well with variations in the circulation pattern (Marshall

et al., 2001). To include as much variation as possible, results were

based on the average of all spawning times, drift depths, drift dura-

tions and years with a total of ~100M individual drift trajectories.
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Because of model domain limitations, the North Sea spawning areas

did not include the Viking Bank east of Shetland. Connectivity

between the spawning areas and the larval settlement areas (west-

ern and eastern Skagerrak, and Kattegat) was calculated as the pro-

portion of eggs spawned in area i and settling as larvae in area j.

Furthermore, dispersal patterns from the spawning areas to western

Skagerrak fjords were also assessed. As the spatial resolution of the

biophysical model is not sufficient to represent the full geomorphol-

ogy of the inner fjords, only the coastal waters close to the fjord

mouths were considered (Soppekilen was not included as the con-

nectivity model cannot resolve this site from the closely situated

Hellefjord). The measure of connectivity of the biophysical model

only predicts the probability per egg to be transported from i to j.

To obtain a relative estimate of the abundance of eggs reaching a

settlement area, we also scaled the inferred connectivity with recent

estimates of the spawning stock biomass (SSB, for calculations see

Jonsson et al., 2016).

2.5 | Chromosomal rearrangements

The genomic architecture was examined to study the impact of large

chromosomal rearrangements on population divergence and adapta-

tion. The physical locations of SNPs within chromosomes (here: link-

age groups; LGs) were inferred by mapping the flanking regions of

all SNPs to the gadMor2 genome assembly (Tørresen et al., 2017)

using BLAST v2.2.26+ (Camacho et al., 2009). Querying 10,913 flank-

ing region pairs resulted in 10,804 blast hits, which were subse-

quently filtered according to the following quality thresholds:

identity between query and hit >90%, E-value <1.0 9 10�42, and

minimum length >100 bp. SNPs not meeting these criteria (n = 182)

and SNPs on unplaced contigs (n = 526) were removed. Of the

remaining SNPs, the exact positions were retrieved only for high-

quality SNPs included in this study (7,783, including linked SNPs, see

above). Of these, 506 SNPs could not be mapped, leaving 7,277

SNPs with known position for analysis of the chromosomal rear-

rangements. The R package INVERSION (C�aceres, Sindi, Raphael,

C�aceres, & Gonz�alez, 2012) was used to approximate the start and

end points of rearranged regions. A block size of 3 SNPs was used

to flank each side of the breakpoint, the minimum minor allele fre-

quency was set to 0.1, and rearrangements were scanned with fixed

window sizes from 1 to 13 Mbp. All predictions with Bayesian infor-

mation criterion (BIC) >0 were scored (Table S6), and breakpoints

were defined as the position of the SNP closest to the mean value

between breakpoint maxima. The allelic state of each individual (ho-

mozygote collinear, heterozygote or variant rearranged homozygote,

as defined by nucleotide diversity in Berg et al. (2016)) was inferred

using PCA as implemented in the R package ADEGENET v1.4-1

(Jombart, 2008), similar to the approach described by Ma and Amos

(2012). Bootstrapping (Efron, 1979; sample size 1,000,000) of indi-

vidual genotypes was used to calculate the probability of an over- or

underrepresentation of the presumably rearranged allele within sam-

pling sites and within western (Tvedestrand, Soppekilen, Hellefjord,

Grenland) and eastern (Iddefjord, Gullmarsfjord, Havstensfjord) fjords

under the null hypothesis that the frequency of rearranged alleles

within a population corresponds to its overall frequency across all

populations. Sequential Bonferroni correction was applied to correct

for multiple tests (Rice, 1988).

3 | RESULTS

3.1 | Genetic differentiation

The software STRUCTURE was used to investigate population differenti-

ation and the most likely number of clusters (K) by applying the

admixture model in a hierarchical framework. All samples were

tested for their cluster membership in up to five clusters, based on

which K = 2 (Figure 2a) and K = 3 (Figure 2b) were supported as

the most likely numbers of populations present (for likelihood values

see Table S3). According to Evanno’s ΔK statistic, an ad hoc quantity

based on the rate of change of the likelihood function (Evanno, Reg-

naut, & Goudet, 2005), K = 2 received most support. In a hierarchi-

cal STRUCTURE analysis, the most differentiated clusters are excluded

to allow for a more precise analysis of the remaining samples (V€ah€a,

Erkinaro, Niemel€a, & Primmer, 2007). Assuming K = 2, the two most

differentiated clusters were composed of the English Channel (ENG),

North Sea (NOR), Oslofjord (OSL) and Skagerrak (SKA) (henceforth

summarized as North Sea-like group), and the Kattegat (KAT), €Ore-

sund (ORE) and Belt Sea (BEL) (from now on summarized as western

Baltic-like group) (Figure 2a). Accordingly, these samples were anal-

ysed in separate runs, but no hidden substructure was detected

(Fig. S2, for likelihood values see Table S3). Likewise, separate analy-

ses of the remaining fjord sampling sites (Tvedestrand (TVE), Soppe-

kilen (SOP), Hellefjord (HEL), Grenland (GRE), Iddefjord (IDD),

Gullmarsfjord (GUL), Havstensfjord (HAV)) revealed no further sub-

structure and resulted in very similar likelihoods for K = 2 and K = 3

(Fig. S2 and Table S3). In contrast to the well-differentiated groups,

the fjord samples (except OSL, see above) consisted of either North

Sea-like, or western Baltic-like individuals when K = 2 (Figure 2a), or

a distinct third genetic cluster when K = 3, which was mainly pre-

sent in western Skagerrak fjords, and of these predominately found

in the samples Hellefjord (HEL) and Grenland (GRE) (Figure 2b). This

pattern is concordant with the results of the principal component

analysis (PCA), where the largest variance was found between North

Sea-like and western Baltic-like groups, and the second-largest vari-

ance separated these groups from western Skagerrak fjord samples

(Appendix S2 and Fig. S3). Differentiation between North Sea and

Baltic-like groups was also evident based on neutral markers; how-

ever, this was not the case for the third western fjord cluster

(Fig. S3). In contrast, using only diversifying SNPs, only randomly

selected SNPs on larger scaffolds, or excluding the most differenti-

ated groups had no major influence on the three-cluster pattern

(Appendix S2 and Fig. S3).

All eastern and many western Skagerrak fjord individuals were

found either in the North Sea-like or the western Baltic-like group,

indicating a mechanical mix of individuals from different sources. To

differentiate between mechanical mixture and admixture, we
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therefore applied an assignment approach as a second test in STRUC-

TURE, using the well-differentiated North Sea and Kattegat samples

as source populations. Per location kernel density estimates showed

unimodality, suggesting a single source of ancestry, for the well-dif-

ferentiated populations: English Channel (ENG) (North Sea-like,

dip 0.040, p > .05), Skagerrak (SKA) (North Sea-like, dip 0.068,

p > .05), Oslofjord (OSL) (North Sea-like, dip 0.039, p > .05), €Ore-

sund (ORE) (western Baltic-like, dip 0.044, p > .05) and Belt Sea

(BEL) (western Baltic-like, dip 0.031, p > .05) (Figure 2c,d). Significant

bimodality suggesting ancestry from both source populations (NOR

and KAT) was found for the western fjord sampling sites Tvedes-

trand (TVE) (dip 0.096, p = .001) and Soppekilen (SOP) (dip 0.107,

p < .01), as well as the eastern fjord Iddefjord (IDD) (dip 0.095,

p = .001) (Figure 2c,d). Nevertheless, these three sampling sites also

include individuals with genotypes intermediate between the two

clusters with q ~0.5 (Figure 2c). The two eastern Skagerrak fjords

Gullmarsfjord (GUL) and Havstensfjord (HAV) also showed bimodal

distributions; however, support for bimodality was nonsignificant

(GUL: dip 0.050, p > .05; HAV: dip 0.083, p > .05). Samples from

Hellefjord (HEL) and Grenland (GRE) were characterized by rather

unimodal ancestry distributions, indicating a western Baltic-like origin

(HEL: dip 0.052, p > .05; GRE: dip 0.909, p > .05). Whether these

individuals are truly of Kattegat/western Baltic origin, or whether

they originate from another nonsampled source population cannot

be distinguished with this method.

To quantify genomic admixture of the two source populations

within the fjord individuals by their hybrid indices (H), we performed

Bayesian genomic cline analysis. The obtained hybrid indices largely cor-

roborate the results of the STRUCTURE assignment approach (Figure 2e

and Table S7). By applying thresholds of H ≤ 0.25 and ≥ 0.75, individu-

als were classified as pure North Sea or Kattegat ancestry. Based on

these thresholds, Hellefjord (HEL) and Grenland (GRE) are unique as

they possess the lowest proportions of individuals with inferred pure

North Sea ancestry compared to all other fjords (HEL 0%, GRE 10.6%),

the largest percentages of admixed individuals (GRE 59.6%, HEL 52.9%)

and the largest proportions of individuals with inferred pure Kattegat
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ancestry (HEL 47.1%, GRE 29.8%) (Table S8). In general, all fjords pos-

sess admixed individuals, albeit at lower proportions in Tvedestrand

(TVE 34%), Soppekilen (SOP 32.1%), Iddefjord (IDD 34.8%), Gullmars-

fjord (GUL 48.9%) and Havstensfjord (HAV 41.7%). In these fjords,

mechanical mixing of individuals with different ancestries seems to

dominate the population structure.

Pairwise fixation indices (FST) were calculated to characterize the

population structure between the different sampling sites and to

assess the connectivity through isolation-by-distance (IBD) estimates.

FST estimates were generally low (average pairwise FST 0.0031) but

significant in almost three fourths of comparisons (Figure 3a and

Table S9). Comparatively high differentiation was estimated between

the North Sea (NOR) and the western Baltic (ORE, BEL) samples (FST

0.0080–0.0084), but genetic differentiation between the English

Channel (ENG) and the North Sea was weak (FST 0.0005) and not

significant. The largest differentiation was found between the west-

ern Skagerrak sampling site Hellefjord (HEL) and the North Sea (FST

0.0130), but Hellefjord was similarly strongly differentiated from the

English Channel, Skagerrak (SKA) and Oslofjord (OSL), as well as sig-

nificantly differentiated from the western Baltic (FST 0.0030–0.0033)

and eastern Skagerrak fjords (FST 0.0042–0.0068). Applying multidi-

mensional scaling (MDS) to pairwise FST distances, this separation is

evident by Hellefjord being furthest off both axes (Figure 3b). The

visualization of FST distances by MDS also revealed genetic distinc-

tion of the western Skagerrak fjord samples Soppekilen (SOP) and

Grenland (GRE) in addition to Hellefjord (Figure 3b), whereas the

eastern Skagerrak fjord samples HAV and GUL are found intermedi-

ate between North Sea and Baltic-like groups. No significant differ-

entiation could be detected between the western Baltic and the

Kattegat (KAT) samples. In the MDS plot, this high similarity is

apparent by the close proximity of these three locations (Figure 3b).

Isolation by distance was assessed using a Mantel test among

fjord sampling sites only, or including the reference populations, and

considering either direct geographical distances between sampling

coordinates or least-cost paths restricted to marine and shelf areas.

However, no significant correlation was detected for any of the com-

parisons (Fig. S4). In summary, these results describe the presence of

differentiated western Skagerrak fjord cod, and a mixed occurrence

of North Sea and Kattegat cod within eastern Skagerrak fjords.

3.2 | Biophysical connectivity modelling

The biophysical model of egg and larval dispersal suggested substan-

tial and intermediate larval supply from the spawning areas in the

North Sea to the western and the eastern Skagerrak coast, respec-

tively, but low dispersal to the Kattegat (Figure 4a, for spawning

areas see Fig. S1). In contrast, the Kattegat and the small but rela-

tively productive spawning areas in the Danish straits (belonging to

the western Baltic, see Figure 1) may provide a large proportion of

competent larvae along the eastern Skagerrak coast, but less disper-

sal to the western Skagerrak coast (Figure 4a). The Kattegat itself

appeared to largely rely on local spawning areas and import from the

Danish straits (Figure 4a). Similarly, local recruitment was also pre-

dicted along the western Skagerrak coast, although these values may

be underestimates as the model does not resolve the complex geo-

morphology with high retention within fjords. No local recruitment

was assumed for the eastern Skagerrak coast where spawning stocks

are negligible (see Jonsson et al., 2016).

The fjords along the western Skagerrak coast received compe-

tent larvae from all considered spawning areas (Figure 4b); however,

the model predicted particularly large larval supply from the North

Sea to the Oslofjord (OSL). This North Sea influence varies greatly

between years (indicated by the SD in Figure 4b) and is particularly

strong during years with positive NAO winter index. There may also

be larger connectivity of Tvedestrand (TVE) with the North Sea as

compared to the Hellefjord (HEL) and Grenland (GRE). Notably, the
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model also predicted a substantial supply of Kattegat/Danish straits

larvae to all studied western Skagerrak fjords (Figure 4b). These

results indicate that larval connectivity considerably influences the

genetic population structure and that high connectivity and resulting

gene flow may be negatively correlated with the potential for local

adaptation.

3.3 | Chromosomal rearrangements

Large genomic regions exhibiting strong linkage disequilibrium (LD)

on several Atlantic cod chromosomes (linkage groups; LG) have

recently been reported (Berg et al., 2015, 2016; Kirubakaran et al.,

2016; Sodeland et al., 2016). Likely all of these regions represent

large chromosomal inversions as suggested in previous studies (Berg

et al.,2016; Sodeland et al.,2016), and empirically demonstrated for

the linked region on LG1 (Kirubakaran et al., 2016). As our data set

was filtered for LD using a strict filtering cut-off (r2 > 0.1), most

SNPs within the rearranged regions were removed due to strong sig-

nals of LD, with the remaining ones not influencing the genetic

structure (Fig. S5). However, as these genomic regions have been

suggested to carry genes responsible for local adaptation to low

salinity, temperature and oxygen levels (Berg et al., 2015; Bradbury

et al., 2010), these linked SNPs were used in separate analyses to

investigate the occurrence and segregation of the chromosomal rear-

rangements between sampling sites. Our data revealed three of the

four putative inversions previously described by Berg et al. (2015):

LG2 (position 18,609,260–23,660,985; ~5.05 Mbp), LG7 (position

13,622,710–23,181,520; ~9.56 Mbp) and LG12 (position 426,531–

13,445,150; ~13.02 Mbp). The inversion on LG1 has so far exclu-

sively been found in comparison with the Northeast Arctic cod (Berg

et al., 2016; Kirubakaran et al., 2016), and was not detected in our

data using the R package INVERSION. However, a comparison of SNPs

within the linked region on LG1 in our data with the previously pub-

lished data from Berg et al. (2016) revealed four heterozygous indi-

viduals (0.76%) carrying both the inverted and the collinear allele

(two from OSL, one each from GRE and NOR).

Based on a bootstrap analysis, a significant overrepresentation of

the rearranged allele on LG2 was detected for the western Skagerrak

fjords Hellefjord (HEL, p < .001) and Grenland (GRE, p < .001), as

well as for the €Oresund (ORE, p < .001) (Figure 5a). The rearranged

allele on LG7 was not found to be significantly overrepresented in

any of the sampling sites (Figure 5b). However, the rearranged allele

on LG12 was significantly overrepresented in the North Sea (NOR,

p < .001), the Oslofjord (OSL, p < .001) and also the Skagerrak (SKA,

p < .05; not significant after correction for multiple comparisons)

(Figure 5c). In addition, the geographically most distant English

Channel (ENG) exhibited a significant underrepresentation of the

rearranged alleles for all three LGs (p < .001). Comparisons of the

occurrence of the rearranged alleles in all western fjords (TVE, SOP,

HEL, GRE) and all eastern fjords (IDD, GUL, HAV) revealed a signifi-

cant overrepresentation of the rearranged allele on LG2 within west-

ern fjords (p < .001), but not within eastern fjords. As the Oslofjord

clustered with the North Sea group, it was excluded from this com-

parison; however, the rearranged allele on LG2 was also significantly

overrepresented (p < .01) when the Oslofjord was included within

the western fjords. In summary, these findings suggest that the par-

ticular genomic architecture of Atlantic cod may contribute to the

potential for local adaptation to a low salinity environment.

4 | DISCUSSION

How local adaptation can be maintained in the face of gene flow is

a long-standing question in evolutionary biology, which we are now

beginning to understand owing to the profound advances in

sequencing technology and genomic analysis tools (Tigano & Friesen,

2016). While it is well recognized that chromosomal inversions can

play an important role as drivers of evolution (reviewed in Hoffmann

& Rieseberg, 2008), there are still few studies investigating the role
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of chromosomal rearrangements in high geneflow species. Marine

organisms provide ideal models to study this question, owing to their

varied habitats and the lack of physical barriers. By combining geno-

mic analyses of ecologically distinct Atlantic cod populations with

biophysical modelling of dispersal, we were not only able to unravel

cryptic population structure and detect ecologically differentiated

populations, but also identified chromosomal rearrangements as a

potential mechanism enabling local adaptation despite high connec-

tivity.

4.1 | Western Skagerrak fjords possess locally
differentiated Atlantic cod despite high connectivity
and a mix of North Sea and Kattegat cod

The ecological peculiarity of the low-saline Baltic Sea and the transi-

tion zone connecting it with the saline North Sea have led to the

evolution of unique linages (Johannesson & Andr�e, 2006). Neverthe-

less, based on unlinked SNPs, the overall population differentiation

of Atlantic cod within this area was weak, as also shown in earlier

studies and explained by large effective population sizes and high

gene flow (Knutsen et al., 2011; Nielsen, Grønkjaer, Meldrup, &

Paulsen, 2005). Comparatively strong differentiation was detected

between North Sea/English Channel/Skagerrak and Kattegat/west-

ern Baltic samples, reflecting the geographical separation (Figure 1)

as well as a separation resulting from adaptation to low salinity as

shown previously for Atlantic cod, but also many other species of

the eastern Baltic Sea (Berg et al., 2015; Johannesson & Andr�e,

2006; Lamichhaney et al., 2012; Sj€oqvist, Godhe, Jonsson, Sundqvist,

& Kremp, 2015). However, no genetic differentiation was detected

within these strongly separated North Sea-like and western Baltic-

like groups (Appendix S3).

Contrary to these well defined populations, the eastern Skager-

rak fjords appeared to be composed of a mix between North Sea-

like and western Baltic-like individuals, indicating that these fjords

are part of the distributional area of the two major evolutionary

units detected in this study. These fjords may experience larval

recruitment through a strong influx of central North Sea water into

the Skagerrak, as well as less-saline Kattegat water entering along

the coast (Andr�e et al., 2016; Danielssen et al., 1997; Jonsson

et al., 2016; Knutsen et al., 2004; Stenseth et al., 2006). In agree-

ment with these predominant ocean currents, a large fraction of

individuals from the eastern Skagerrak fjords appeared to be of

North Sea origin (Figure 2), while our biophysical model suggested

greater larval connectivity with the Kattegat and western Baltic

(Figure 5). However, the model did not include the North Sea Vik-

ing bank spawning ground which has significantly increased its con-

tribution during the last decades (Jonsson et al., 2016), suggesting

that the influence of the North Sea spawning areas to the eastern

Skagerrak is larger than shown in our modelling. We did not detect

genetically differentiated individuals that would be indicative for a

distinct fjord population in eastern Skagerrak fjords, although differ-

entiation between Atlantic cod larvae inside and outside Gullmars-

fjord was previously found (Øresland & Andr�e, 2008). It is

unknown if recent reductions in abundance along the eastern

Skagerrak coast (Sved€ang & Bardon, 2003; Sved€ang & Svenson,

2006) indicate the loss or severe decimation of a genetically differ-

entiated population in this region.

In contrast, the western Skagerrak fjord samples included varying

levels of genetically differentiated individuals that clustered neither

with the North Sea-like nor the western Baltic-like group (Figure 2b),

indicative of the existence of a local western Skagerrak coastal or

fjord cod population(s). The existence of such local populations is

also supported by the biophysical model results, which explained a

large fraction of larval supply by local recruitment (Figure 4). Local

fjord cod has previously also been assumed to exist at the northern

Norwegian coast (Jørstad & Naevdal, 1989; Myksvoll, Jung, Albret-

sen, & Sundby, 2014), and differentiation between fjord, coastal or

oceanic cod has been shown in two closely related gadiids, the Paci-

fic cod (Gadus macrocephalus) and the polar cod (Boreogadus saida)

(Cunningham, Canino, Spies, & Hauser, 2009; Madsen, Nelson,

Fevolden, Christiansen, & Præbel, 2015).
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Fjord systems represent semi-enclosed ecosystems where water

exchange is restricted by a narrow connection with the outer sea,

often further reduced by a tall entrance sill, thus creating an inner

estuarine circulation (Howe et al., 2010). Such conditions have been

shown to hamper gene flow as a result of stationary behaviour with

reduced adult migration and restricted egg and larval dispersal (Berg-

stad, Jørgensen, Knutsen, & Berge, 2008; Ciannelli et al., 2010;

Espeland et al., 2007, 2008; Jung et al., 2012; Knutsen et al., 2007;

Rogers et al., 2014). Consequently, the strongest genetic differentia-

tion and the largest fraction of local western Skagerrak fjord individ-

uals was found in the particularly isolated Hellefjord (Molvær, Green,

& Baalsrud, 1978) and Grenland fjord (Danielssen & Føyn, 1973)

(Figure 2b). Although the differentiation of the Hellefjord sample

might be overestimated due to the small sample size and collection

of juveniles, these results were strongly supported by the Grenland

fjord sample, consisting of a large sample of adults collected during

both spawning and nonspawning periods. However, weaker genetic

differentiation was estimated for the Tvedestrand and Soppekilen

samples, which may be attributed to bathymetric and temporal dif-

ferences (Appendix S4).

Interestingly, the majority of the Oslofjord individuals were

assigned a North Sea origin in the ancestry analysis (Figure 2e), a

pattern largely supported by the biophysical model (Figure 4b). How-

ever, strong contribution from the Kattegat/western Baltic was also

predicted by the model but was not as evident in the genetic results,

possibly indicating the lack of the North Sea Viking bank spawning

ground in the model. In contrast to the Oslofjord, all western Skager-

rak fjords showed a lower percentage of individuals with North Sea

origin and about one quarter were assigned Kattegat/western Baltic

origin. This result supports the suggestion that spawning areas in the

Danish straits and especially in the €Oresund may constitute an

important source of Atlantic cod larvae for both the eastern and the

western Skagerrak (Jonsson et al., 2016).

4.2 | Do chromosomal rearrangements facilitate
ecological adaptation of Atlantic cod?

Atlantic cod can be found in a variety of different habitats, ranging

from the relatively warm waters in the Bay of Biscay, from small

sheltered coastal and fjord ecosystems, to low-saline seas like the

Baltic Sea, and to open oceanic environments and very cold waters

in the Barents Sea (Lilly et al., 2008), an environmental flexibility that

likely required the acquisition of locally adaptive traits. It has

recently been described that such adaptations, especially in highly

connected organisms like oceanic fish, can arise through the segrega-

tion of chromosomal rearrangements, where recombination is sup-

pressed and important functional genes are inherited together

(Feder, Egan, & Nosil, 2012; Thompson & Jiggins, 2014; Tigano &

Friesen, 2016). While empirical evidence for this theory is still

scarce, it is well supported by studies on stickleback (Jones et al.,

2012; Roesti et al., 2015). Recently, haplotype blocks associated

with ecological adaptation were also detected in the Atlantic herring,

but it is unclear if inversions are the causative mechanism

(Lamichhaney et al., 2017; Martinez-Barrio et al., 2016). In contrast,

a series of recent studies employing genomewide data to dissect

Atlantic cod population differentiation, discovered exceptionally large

chromosomal rearrangements that are likely to be inversions on sev-

eral linkage groups (LGs), which were suggested to play a major role

for the adaptive abilities of Atlantic cod (Barney et al., 2017; Berg

et al., 2015, 2016; Bradbury et al., 2013, 2014; Hemmer-Hansen

et al., 2013; Kirubakaran et al., 2016; Sodeland et al., 2016). These

recent studies, including this study, therefore contribute remarkable

examples in the marine environment to a growing body of literature

identifying chromosomal rearrangements and inversions as an impor-

tant mechanism to maintain contrasting ecotypes in intermixing pop-

ulations (Cheng et al., 2012; Hoffmann & Rieseberg, 2008; Joron

et al., 2011; Lowry & Willis, 2010).

For example, adaptation to low-saline and hypoxic environments

as occurring in the Baltic Sea strongly depends on the ability for

osmoregulation and effective oxygen management (Andersen et al.,

2009; Berg et al., 2015). Berg et al. (2015) compared North and Bal-

tic Sea cod and found several SNPs within genes important for salin-

ity and oxygen regulation, of which the majority reside within a

rearranged region on LG2, implicating an essential role of this rear-

ranged region for the Atlantic cod’s ability to adapt to the environ-

mental conditions in the Baltic Sea. Such genetic–environment

correlations may also be due to intrinsic genetic incompatibilities

that merely coincide with ecological barriers (Bierne, Welch, Loire,

Bonhomme, & David, 2011). However, similar patterns of genes

involved in oxygen- or osmoregulation were also associated with

salinity clines in studies of Atlantic herring (Limborg et al., 2012;

Martinez-Barrio et al., 2016), indicating the presence of true local

adaptation.

Remarkably, fjord ecosystems have notable similarities with the

Baltic Sea: both originated by glacial retreat, represent enclosed

estuaries with high freshwater input and restricted exchange with

saline oceanic water leading to estuarine circulations, and both fea-

ture deep basins with mostly hypoxic conditions (Harff, Bj€orck, &

Hoth, 2011; Howe et al., 2010). Thus, similar adaptations may be

required for successful colonization of the Baltic Sea and fjord

ecosystems. Indeed, our ancestry analyses showed that local western

Skagerrak fjord individuals are genetically more similar to the Katte-

gat/western Baltic population (an area discussed as a transition zone

between the North Sea and the eastern Baltic Sea (Nielsen, Hansen,

Ruzzante, Meldrup, & Grønkjaer, 2003)) than to the North Sea popu-

lation. In addition, we found a significant overrepresentation of the

rearranged LG2 allele in the Hellefjord and Grenland fjord samples

(Figure 5a), an allelic shift that has recently also been described

between oceanic and coastal cod groups (Sodeland et al., 2016).

Both fjords have high freshwater influx, causing a low-saline surface

layer above oceanic water with 25–30& salinity (Danielssen & Føyn,

1973; Molvær et al., 1978), comparable to salinity gradients in the

Kattegat/western Baltic (Madsen & Højerslev, 2009). As an adapta-

tion to low-saline conditions, Atlantic cod inhabiting the Baltic Sea

produce highly hydrated eggs that are neutrally buoyant between

~14& (eastern Baltic Sea) and ~21& (Danish straits) (Nissling &
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Westin, 1997; for a recent review see H€ussy, 2011), a mechanism

that for example prevents lethal sinking of the eggs to the hypoxic

deeper layers in the Baltic Sea. In contrast, the eggs of marine Atlan-

tic cod populations are neutrally buoyant at salinities of ~33& (Thor-

sen, Kjesbu, Fyhndr, & Solemdal, 1996). Similar to Baltic cod, eggs of

fjord cod are neutrally buoyant in the low-saline water layers of

fjords, which not only prevents sinking of the eggs to hypoxic layers,

but also retains the eggs inside the sheltered fjord area (Ciannelli

et al., 2010; Espeland et al., 2007; Jung et al., 2012; Knutsen et al.,

2007). Egg buoyancy can be regulated by the in- and efflux of

solutes (Reading et al., 2012), and many SNPs in or close to genes

coding for membrane trafficking proteins have been identified within

the rearranged region on LG2 (Berg et al., 2015). This accumulation

of adaptive variation could be explained by diversifying selection

shaping the rearranged region in the likely absence of recombination

between the alleles. In ecosystems where regulation of egg buoy-

ancy provides an evolutionary advantage, an increase in the fre-

quency of the rearrangement might be expected.

In addition to our samples from Hellefjord and Grenland fjord,

our €Oresund sample from the western Baltic also shared a significant

overrepresentation of the rearranged allele on LG2, which occurs at

very high frequency in eastern Baltic cod (Berg et al., 2015). How-

ever, our Belt Sea and Kattegat samples did not show an increased

occurrence of the rearranged LG2 allele although the genetic struc-

ture analyses suggested genetic similarity between the Kattegat and

western Baltic samples, indicative for additional adaptive variation

outside the large rearrangements. Interestingly, the rearranged LG12

allele was found to be significantly overrepresented in our North Sea

and Oslofjord samples, with high occurrences also in the eastern

Skagerrak sample (Figure 5c). Concordantly, this allele was recently

found to occur at higher frequency in oceanic compared to coastal

Atlantic cod populations and was suggested to play a role in ecologi-

cal adaptation (Sodeland et al., 2016). It has previously also been

associated with an adaptation to temperature (Berg et al., 2015;

Bradbury et al., 2010), which could thus be relevant with regard to

survival and abundance of Atlantic cod in the face of global warming

(Drinkwater, 2005). However, similar to the Kattegat/western Baltic

samples, which shared most genetic variation but showed a distinct

pattern in the occurrence of the rearranged LG2 allele, the North

Sea, Oslofjord, Skagerrak and English Channel samples were not dis-

tinguishable based on SNPs outside the rearranged regions, but

showed a distinct distribution of the rearranged LG12 allele. This

contrast between the genomewide profile that rather reflects con-

nectivity and geography, and the chromosomal rearrangements that

seem to cluster according to environment, indicates that despite the

high gene flow between Atlantic cod populations important genes

under adaptive divergent selection likely reside within rearranged

regions.

4.3 | Significance and summary of the study

Because of their relatively higher fitness in their native habitat com-

pared to introduced populations, locally adapted populations are

often irreplaceable once vanished (Kawecki & Ebert, 2004; Reiss,

Hoarau, Dickey-Collas, & Wolff, 2009). Human activity has led to

the collapse of several fish stocks (Myers, Hutchings, & Barrowman,

1996; Pinsky, Jensen, Ricard, & Palumbi, 2011) and populations of

Atlantic cod regionally suffer from overexploitation and population

decline (Bartolino et al., 2012; Bonanomi et al., 2015; Sved€ang &

Bardon, 2003; Sved€ang & Svenson, 2006), causing predator-prey

shifts and imbalance of sensible ecosystems (Baden, Emanuelsson,

Pihl, Svensson, & �Aberg, 2012; €Ostman et al., 2016). Thus, priorities

are high to clarify the potential and occurrence of local adaptation in

such high gene flow species, as well as to improve our understand-

ing of the genetic mechanism for adaptation to conserve genetic

resources in a globally changing world.

Our study showed that: 1.) the here described North Sea, Katte-

gat/western Baltic and western Skagerrak fjord cod genotypes most

likely correspond to the previously identified oceanic and coastal

ecotypes, respectively, thus shedding light on the long-standing

question whether local fjord ecotypes exist and 2.) western Skager-

rak fjord cod, despite high connectivity with the North Sea, may

possess adaptations facilitating a life in a low salinity environment

similar to Atlantic cod from the Baltic Sea. The genes encoding

these adaptations are suggested to partially reside in large chromo-

somal rearrangements, regions that due to their reduced recombina-

tion are known to promote adaptive population divergence (Feder

& Nosil, 2009; Kirkpatrick & Barton, 2006; Thompson & Jiggins,

2014).

In contrast, no locally differentiated fjord cod was detected in

the eastern Skagerrak fjords, supporting the absence or suspected

loss of local populations along the Swedish coast (Sved€ang &

Bardon, 2003). We thus emphasize the importance of taking gen-

ome architecture into account when characterizing ecological

adaptation, particularly for species characterized by high gene

flow.
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